

MCS Total Solutions for all your HVAC/R Control Needs

MCS-Nitromag Upgrade Brochure WMC Chillers

Click for Brochure Upgrades▶

This brochure describes a standard upgrade package for the McQuay / Daikin WMC Chillers.

WMC chillers require replacement of existing BMCC cards on compressors. Not provided by MCS.

Each control upgrade installation is unique. It may be necessary to add additional options to the standard upgrade as described in this brochure.

Fill out the brief questionnaire in the back of this brochure and forward to your sales representative for an estimate.

Example MCS-NitroMag Upgrade Photos

Package with Industrial Control Panel Concerns:

- · Old controls failed
- · Wanted controls that were easier to understand
- and greater reliability, plus better and clear information

Equipment:

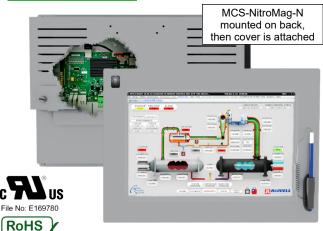
- · WMC and other brands Water Cooled Chillers
- One to Four Turbocor Compressors
- · One to Four Staging Valves
- · Load balancing EXV control
- Modulating condenser water valve

Steps Taken:

- Remove existing controls
- · Install MCS controls
- · Reprogram Turbocor boards for communication
- Provide on-site training and support for contractor to better understand MCS controls.

Results:

One WMC Turbocor Chiller upgraded with MCS controls and one satisfied customer who is very happy with all the information and data available compared to the competitor's controls.



New Controls installed in existing cabinet. New MCS-NitroMag-15.4 mounted on chiller

MCS-NitroMag-15.4 **Description & Specifications**

Part # MCS-NitroMag-15.4

Description

The MCS-NitroMag-15.4 is a control system containing a Capacitive Touchscreen, and a MCS-NitroMag-N controller. It includes a processor, memory, eMMC Flash, and supporting power circuitry. The Broadcom quad-core processor on the MCS-NitroMag-N delivers a blazing speed of 1.5GHz.

The MCS-NitroMag-N controller connects with MCS Expansion boards and Extension boards, allowing for a maximum of 144 SI inputs, 90 RO outputs, and 36 AO outputs.

The Capacitive touchscreen interface designed to simplify user access with the MCS Expansion Boards and utilizing MCS-Connect to provide both graphics and service mode access to technicians. Highly accurate and does not require calibration - easy to clean glass surface. Works outdoors, bright screen, water resistant, Exceptional Optics - 1280x800 resolution, sharp and vibrant images.

MCS-NitroMag-15.4 comes pre loaded with the MCS-CONNECT program that allows you to view the 'unit's status', 'extended history', 'alerts', 'alarms', setpoints, and more, all in a userfriendly graphic format.

The MCS-NitroMag-15.4 comes with a built-in WiFi interface for Ethernet connectivity, and an onboard WiFi antenna connection mounted on the front of the touchscreen.

It features various connections ports for:

- 2 HDMI ports (1 Standard and 1 Micro port)
- · WiFi antenna connection
- · 12vdc power input connection
- Ethernet port (10 Mbps/100 Mbps/1 GHz)
- · MCS-IO port for communicating with expansion boards.

Includes a MODBUS interface which enables it to act as a Modbus Master using the Modbus RTU protocol, allowing communication with Modbus slave devices for parameter access.

Specifications

432mm L x 308mm W x 82mm H

Mountina

Door Mount.Template included

10 mount studs thru customers enclosure.

MS4745 silicone gasket

NEMA 4 IP66 rated

Indoor or outdoor (Mounted in Nema4 Enclosure)

16.2 Million Colors

1280x800 Resolution

View Angle 70°U, 70°D, 70°L, 70°R

Capacitive Stylus pen

White LED Backlight (Min Life 50,000 Hrs)

Luminance Min. 350 Min. 450 Typical

Touchscreen Surface......UV Degradation Protection

Operating Temperature...... -22°F to 176°F (-30°C to +80°C)

Operating Humidity......90 %RH (Non Condensing) Storage Temperature.....-22°F to 176°F (-30°C to +80°C)

Controller

Microprocessor...... Broadcom BCM2711 Quad core Cortex (ARMv8) 64-bit SoC @ 1.5Ghz

INPUT	MINIMUM	NOMINAL	MAXIMUM
VOLTAGE	10	12	12.5
AMPS			2

Flash Memory 16 GB EMMC RAM2 GB DDR3 MCS-I/O Comm Port. 1 @ 38,400 baud

RS-485 Ports. 2 @ go up to 115200 baud rate

HDMI2 HDMI 2.0 ports-Standard and Micro WiFi......2.4GHz, 5.0GHz 8.02 b/g/n/ac wireless

USB2 USB type B 2.0 ports 480Mbps signalling

Protocols.....BACnet IP, BACnet MSTP, Modbus IP,

Modbus RTU Slave, Modbus RTU Master

(BTL certification pending)

Real Time ClockBattery backup(Type BR2032)

Power DetectionAutomatic power fail reset

POWER SUPPLY NOT INCLUDED

Packaging

Ship Weight.....2.00 lb (approx)

5580 Enterprise Pkwy., Fort Myers, FL 33905 Office: 239-694-0089 • Fax: 239-694-0031 www.mcscontrols.com

MCS-NitroMag-MLB-15.4 INDUSTRIAL CONTROL PANEL **YSTEMS** RoHS Compliant MCS-NITROMAG CONTROLLER

Part # MCS-NITROMAG-MLB-15.4*

Description

The MCS-NitroMag-MLB-15.4 Industrial Control Panel is made of powder coated aluminum for durability and longevity. A left hand swing door is mounted with three eight-inch hinges for strength. A key lock is provided for security on the door while still giving easy access of the display. This panel is intended for use in an environment protected from the weather.

The MCS-NitroMag-MLB-15.4 is a control system containing a Capacitive Touchscreen, MCS-NITROMAG Controller, MCS-IO-BASE, MCS-IO-EXT. It includes a processor, memory, eMMC Flash, and supporting power circuitry.

Panel includes the following; 20A, and a 5A Single-Pole Circuit Breaker, a 5 port 10/100/1000 Ethernet Workgroup Switch Industrial rated, Red Alarm Indicator, Yellow Warning Indicator, Emergency Stop Switch and HAND/OFF/AUTO selector Switch.

The MCS-NITROMAG controller comes with a built-in WiFi interface for Ethernet connectivity, and an onboard WiFi antenna connection mounted on the front of the touchscreen.

It features various connections ports for:

- 2 HDMI ports (1 Standard and 1 Micro port)
- 12vdc & 24vdc power input connections
- Ethernet port (10 Mbps/100 Mbps/1 GHz)
- MCS-IO port for communicating with expansion boards

Includes a MODBUS interface which enables it to act as a Modbus Master using the Modbus RTU protocol, allowing communication with Modbus slave devices for parameter access. Power is supplied using a MCS-12V-90W power supply.

There is also an electrical outlet for laptop plug-in power at the panel.

Packaging

Weight	60 lbs(approx)
Box	24" x 10" x 30"

Specifications

NEMA Rating - Type 2 Control Panel

Enclosure is intended for indoor use primarily to provide a degree of protection against contact with the enclosed equipment and is not protected from liquids.

Industrial Control Panel

Mounting Holes..... Mounts with four pre drilled 15/32" holes

Rated Voltage (Standard)..... 120VAC or 230VAC 'Phase / Frequency...... 1 Phase / 60Hz

Full Load Current(approx) 40A at 120VAC or 20A at 240VAC

Short Circuit Current Rating . 10kA

Temp. Range for Control Panel & Touch Screen

16.2 Million Colors

1280x800 Resolution

View Angle 70°U, 70°D, 70°L, 70°R

Capacitive Stylus pen

White LED Backlight (Min Life 50,000 Hrs)

Luminance Min. 350 Min. 450 Typical

Touchscreen Surface....... UV Degradation Protection Operating Temperature..... -22°F to 176°F (-30°C to +80°C) Operating Humidity............ 90 %RH (Non Condensing) Storage Temperature....... -22°F to 176°F (-30°C to +80°C)

Controller

Microprocessor..... Broadcom BCM2711 Quad core Cortex (ARMv8) 64-bit SoC @ 1.5Ghz

INPUT	MINIMUM	NOMINAL	MAXIMUM
VOLTAGE	10	12	12.5
AMPS			2

Flash Memory 16 GB EMMC RAM 2 GB DDR3 MCS-I/O Comm Port. 1 @ 38,400 baud RS-485 Ports...... 2 @ go up to 115200 baud rate Ethernet 10 Mbps/100Mbps/1Gbps HDMI2 HDMI 2.0 ports-Standard and Micro WiFi2.4 GHz, 5.0 GHz 8.02 b/g/n/ac wireless

USB2 USB type B 2.0 ports 480Mbps signalling Protocols.....BACnet IP, BACnet MSTP, Modbus IP,

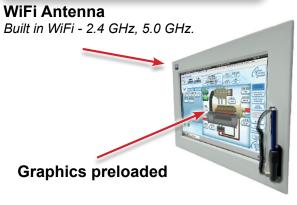
Modbus RTU Slave, Modbus RTU Master (BTL certification cpending)

Real Time ClockBattery backup(Type BR2032) Power Detection Automatic power fail reset

Power Supply - Specification

12vdc power supply.....85vac ~ 264vac AC frequency range......47 ~ 63Hz / 7.5A / 90W

24vdc power supply......85vac ~ 264vac AC frequency range.......47 ~ 63Hz / 4A / 96W


5580 Enterprise Pkwy., Fort Myers, FL 33905 Office: 239-694-0089 • Fax: 239-694-0031 www.mcscontrols.com

^{*} Photo shown is an example of an Industrial Control Panel; some optional equipment may be shown.

^{**}The glove needs to have a conductive fabric or material to work with cap touchscreens.

Example Graphics MCS-NitroMag-15.4

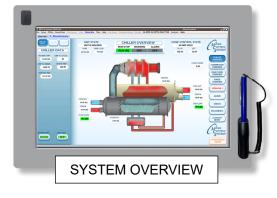
15.4 Touchscreen

Modbus RTU Master programmed in Firmware Supports up to 10 Modbus devices e.g., VFD's KW Meter, Compressors.

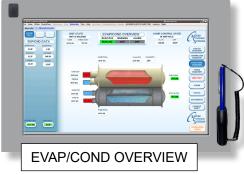
2 HDMI ports (1 Standard & 1 Micro)

The MCS-NitroMag-15.4 capacitive touchscreen interface designed to simplify user access with the MCS-Magnum, MCS- NitroMag and MicroMag utilizing MCS-Connect to provide both graphics and service mode access to technicians. Input method: Finger, glove, stylus.

Highly accurate and does not require calibration - easy to clean glass surface. Works outdoors, bright screen, water resistant, Exceptional Optics - 1280x800 resolution, sharp and vibrant images.


With the new Graphical Interface and MCS-CONNECT, you now have a better view of your controller's many functions as shown on the screens.

MCS-MCS-NitroMag-15.4 comes preloaded with the MCS-CONNECT program that allows you to view the 'unit's status', 'extended history', 'alerts', 'alarms', setpoints, and more, all in a user-friendly graphic format.


The basic graphics package is pre-installed and can be customized by OEMs with the MCS Graphic Builder or custom built by MCS for your controllers.

Standard screens include:

- · System Overview Screen
- Compressor Overview Screen
- · Evaporator/Condenser Overview Screen
- · Documents

Example Typical Upgrade with Optional Boards

MCS-NitroMag-N

The **MCS-NitroMag-N** is a control system containing a processor, memory, eMMC Flash, and supporting power circuitry. The Broadcom quadcore processor delivers a blazing speed of 1.5GHz.

The MCS-NitroMag-N controller connects with MCS Expansion boards and Extension boards, allowing for a maximum of 144 SI inputs, 90 RO outputs, and 36 AO outputs.

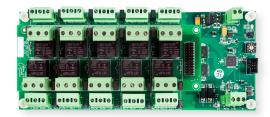
The MCS-NitroMag-N comes with a built-in WiFi interface for Ethernet connectivity, and an onboard WiFi antenna connection.

MCS-IO-Base & MCS-IO-EXT

MCS-IO-BASE has a stand-alone microprocessor which communicates with a MCS-NitroMag over the MCS-I/O port at 38,400 baud. The MCS-IO-BASE has 16 SI inputs, 10 RO outputs, and 4 AO outputs. All data is check summed with auto error correction. Each MCS-IO-BASE board can be powered by a 12VDC regulated power supply and has a automatic power fail reset system.

The MCS-IO-EXT provides a flexible and cost effective way to allow relay output, sensor input and analog output expansion for MCS-NitroMag. Each MCS-IO-EXT can be paired with a MCS-IO-BASE to double the number of inputs and outputs.

MCS-SI-Base & MCS-SI-EXT


The MCS-SI-BASE provides a flexible and cost effective way to allow sensor input and analog output expansion for the MCS-NitroMag. Each MCS-SI-BASE has a stand-alone microprocessor which communicates with the MCS-Nitromag over the MCS-I/O port at 38,400 baud. The MCS-SI-BASE has 16 SI inputs and 4 AO ouputs. All data is check summed with auto error correction. MCS-SI-BASE

board can be powered by a 12VDC regulated power supply and has a automatic power fail reset system.

The MCS-SI-EXT provides a flexible and cost effective way to allow sensor input and analog output expansion for the MCS MAGNUM. Each MCS-SI-EXT can be paired with a MCS-SI-BASE to double the number of inputs and outputs.

MCS-RO-Base & MCS-RO-EXT

The MCS-RO-BASE provides a flexible and cost effective way to allow relay output expansion for the MCS-Nitromag. Each MCS-RO-BASE has a stand-alone microprocessor which communicates over the MCS-I/O port at 38,400 baud. All data is check summed with auto error correction. Because

the communication is over a RS-485 long distance two-wire differential network transmission system, the MCS-RO-BASE may be located up to 5,000 feet away.

The MCS-RO-BASE board is powered by a 12VDC regulated power supply.

The MCS-RO-EXT provides a flexible and cost effective way to allow relay output expansion for the MCS NitroMag.

Each MCS-RO-EXT can be paired with a MCS-RO-BASE to double the number of outputs.

Example Typical Control Upgrade

MCS-PRESSURE TRANSDUCERS

The MCS Pressure Transducers are one of the most economical and durable options on the market for dealing with high-pressure industrial applications.

In addition to being CE and UL approved, MCS transducers are capable of surviving high vibration. They include a cavity built out of solid 17-4 PH stainless steel ½" SAE Female Flare fitting & Schrader valve; 7/16-20 UNF pipe thread which creates a leak-proof, all metal sealed system that makes the transducers ideal for use with rugged HVAC environments.

MCS-T100

An extremely fast acting temperature sensor built for demanding environments. It is ideal for high moisture locations with continuous freeze and thaw cycles. The sensor is potted with a thermally conductive RTV Cure Silicon Adhesive to guarantee durability and response. Its high accuracy allows for interchangeability in the field. The large resistance range allows the use of over 1000' of cable with no noticeable effect. The MCS-T100 sensor has the ability to move from 32°F to 212°F in approximately 10 to 15 seconds.

MCS-Wells/Tubes

The MCS-WELL was designed to be used with the MCS-T100 temperature sensor, although it has other applications. It is used in the 23XL series chillers in the chilled water and condenser water lines. It comes pre-filled with heat conductive compound to aid in temperature to the sensor.

The **MCS-TUBE** can be epoxied to a discharge or suction line on the 23XL series chillers in order to obtain temperature readings without the use of a well. It was designed to be used with the MCS-T100 temperature sensor and comes pre-filled with heat conductive compound to aid in transferring temperature to the sensor.

MCS-USB-RS485

The MCS-USB-RS485 is a USB to RS485 cable that provides a fast simple way to connect a MCS-MAGNUM to a Laptop or PC.

The MCS-USB-RS485 cable contains a small internal electronic circuit board, which converts USB to RS485 with LED indicators for transmit (TX=Red) and receive (RX=Green).

Example Typical Control Upgrade

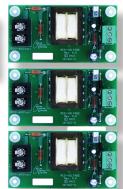
MCS-EPOXY

- Pre-measured resins and hardeners in one tube
- Easy to use bonds, seals, plugs, molds and rebuilds
- No special tools needed
- Can even harden under water

•	Pressure tested to	1300 psi
•	Temperatures up to	500 degree F
•	Color	Gray
•	Density	15.9 lb/gal (1.9 g/cd
•	Hardness (Shore D)	85
•	Tensile Strength	6000 psi
•	Compressive Strength	18.000 psi
•	Modulus of Elasticity	6 x 105 psi
•	Shear Strength	700 psi

MCS-CT500

MCS-CT500 current sensor monitors current flowing to electrical equipment. The magnitude of the current is converted to a linear output voltage between 0.06 to 4.52vdc which can be read as a standard analog input signal. The signal is used by MCS micro controllers for the following:


- 1. For slide valve control on screw machines
- 2. For high amp motor overload protection
- 3. For verification of device on / off

MCS-VOLTAGE-3PH

The **MCS-VOLTAGE-3PH** measures AC voltage between 200-600 AC. It is designed to monitor the voltage of each phase of the main input power to the unit.

The MCS-VOLTAGE-3PH sensor provides three separate DC voltage outputs that correspond to the AC voltage it is measuring.

MCS-PHASE-B

The MCS-PHASE-B is a programmable 3-phase line voltage monitor, high temperature LCD display, easy setup and clear diagnostic readout of system faults. The MCS-PHASE-B was specifically designed to protect motors and other 3-phase loads from premature failure and damage due to common voltage faults such as unbalance, over/under voltage, phase loss, reversal, incorrect sequencing and rapid short cycling.

Relay Outputs (MCS-IO-BASE)

#	Output Name	Туре	Description
1-1	SPARE 1-1	Standard	Relay output not used
1-2	SPARE 1-2	Standard	Relay output not used
13	SPARE 1-3	Standard	Relay output not used
1-4	SPARE 1-4	Standard	Relay output not used
1-5	SPARE 1-5	Standard	Relay output not used
1-6	Cmp1I-Lock	Standard	Comp 1 J2 TurboCor Interlock
1-7	Cmp2I-Lock	User Logic	Comp 2 J2 TurboCor Interlock
1-8	Cmp3I-Lock	User Logic	Comp 3 J2 TurboCor Interlock
1-9	Warning	Standard	Warning Light: unit is in a safety condition prior to a safety shutdown
1-10	Alarm	Standard	Alarm Light: unit is in a safety shutdown

Relay Outputs (MCS-IO-EXT)

2-1	Comp 1	Step w∖ EXV	Compressor 1 Run Enable
2-2	SPARE 2-2	Standard	Relay output not used
2-3	SPARE 2-3	Standard	Relay output not used
2-4	SPARE 2-4	Standard	Relay output not used
2-5	SPARE 2-5	Standard	Relay output not used
2-6	SPARE 2-6	Standard	Relay output not used
2-7	SPARE 2-7	Standard	Relay output not used
2-8	SPARE 2-8	Standard	Relay output not used
2-9	SPARE 2-9	Standard	Relay output not used
2-10	SPARE 2-10	Standard	Relay output not used

Relay Outputs (MCS-RO-BASE)

3-1	Comp 2	Step w∖ EXV	Compressor 2 Run Enable
3-2	SPARE 3-2	Standard	Relay output not used
3-3	SPARE 3-3	Standard	Relay output not used
3-4	SPARE 3-4	Standard	Relay output not used
3-5	SPARE 3-5	Standard	Relay output not used
3-6	SPARE 3-6	Standard	Relay output not used
3-7	SPARE 3-7	Standard	Relay output not used
3-8	SPARE 3-8	Standard	Relay output not used
3-9	SPARE 3-9	Standard	Relay output not used
3-10	SPARE 3-10	Standard	Relay output not used

	Relay Outputs (MCS-RO-EXT)			
#	Output Name	Туре	Description	
4-1	Comp 3	Step w\ EXV	Compressor 3 Run Enable	
4-2	SPARE2-2	Standard	Relay output not used	
4-3	SPARE2-5	Standard	Relay output not used	
4-4	SPARE2-6	Standard	Relay output not used	
4-5	SPARE2-7	Standard	Relay output not used	
4-6	SPARE2-8	Standard	Relay output not used	
4-7	SPARE2-9	Standard	Relay output not used	
4-8	SPARE2-10	Standard	Relay output not used	
4-9	SPARE4-9	Standard	Relay output not used	
4-10	SPARE4-10	Standard	Relay output not used	

Sensor Inputs(MCS-IO-BASE)

#	Output Name	Туре	Description
1-1	ChilWtrIn	MCST100	Chilled Water In Temperature
1-2	ChilWtrOut	MCST100	Chilled Water Leaving Temperature
1-3	CndWtrIn	MCST100	Condenser water incoming temperature
1-4	CndWtrOut	MCST100	Condenser water leaving temperature
1-5	CndLevel	User Defined	Condenser Level Sensor
1-6	LoPsi SW 1	DIGITAL	Mechanical Low Psi Switch Comp 1
1-7	HiPsi SW 1	DIGITAL	Mechanical High Psi Switch Comp 1
1-8	LoPsi SW 2	DIGITAL	Mechanical Low Psi Switch Comp 2
1-9	HiPsi SW 2	DIGITAL	Mechanical High Psi Switch Comp 2
1-10	LoPsi SW 3	DIGITAL	Mechanical Low Psi Switch Comp 3
1-11	HiPsi SW 3	DIGITAL	Mechanical High Psi Switch Comp 3
1-12	CndFlow	DIGITAL	Monitors the condenser flow
1-13	ChwFlow	DIGITAL	Monitors the chilled water flow
1-14	Phaseloss	DIGITAL	Phase loss: phase imbalance
1-15	Run/Stop	DIGITAL	Run/Stop/Hand Switch
1-16	Emg/Stop	DIGITAL	Emergency Stop Switch

Sensor Inputs (MCS-IO-EXT)

#	Output Name	Туре	Description
2-1	Cmp1 Fault	TurboCorFault	Compressor 1 Fault Message
2-2	Ctrl Mode1	ModbusHex	Compressor 1 Control Mode
2-3	IGV Open%	MODBUS	Inlet Guide Vane%-Compressor 1
2-4	SuctPsi 1	MODBUS	Suction Pressure - Compressor 1
2-5	DiscPsi 1	MODBUS	Discharge Pressure - Compressor 1
2-6	CavityTmp1	MODBUS	Cavity Temperature-Compressor 1
2-7	InvertTmp1	MODBUS	Inverter Temperature-Compressor 1
2-8	ChokSpeed1	MODBUS	Choke Speed-Compressor 1
2-9	SurgSpeed1	MODBUS	Surge Speed-Compressor 1
2-10	ActSpeed1	MODBUS	Actual Speed-Compressor 1
2-11	ComPSIRat1	MODBUS	Compressor 1 Pressure Ratio
2-12	Cmp1Amps	MODBUS	Compressor 1 Amperage
2-13	M IGV1STPS	MODBUS	Inlet Guide Vane Steps-Compressor 1
2-14	SPARE 2-14	SPARE	Sensor input not used
2-15	SPARE 2-15	SPARE	Sensor input not used
2-16	SPARE 2-16	SPARE	Sensor input not used

Sensor Inputs (MCS-SI-BASE)

3-1	Cmp2 Fault	TurboCorFault	Compressor 2 Fault Message
3-2	Ctrl Mode2	ModbusHex	Compressor 2 Control Mode
3-3	IGV Open%	MODBUS	Inlet Guide Vane%-Compressor 2
3-4	SuctPsi 2	MODBUS	Suction Pressure - Compressor 2
3-5	DiscPsi 2	MODBUS	Discharge Pressure - Compressor 2
3-6	CavityTmp2	MODBUS	Cavity Temperature-Compressor 2
3-7	InvertTmp2	MODBUS	Inverter Temperature-Compressor 2
3-8	ChokSpeed2	MODBUS	Choke Speed-Compressor 2
3-9	SurgSpeed2	MODBUS	Surge Speed-Compressor 2
3-10	ActSpeed2	MODBUS	Actual Speed-Compressor 2
3-11	ComPSIRat2	MODBUS	Compressor 2 Pressure Ratio
3-12	Cmp2Amps	MODBUS	Compressor 2 Amperage
3-13	M IGV2STPS	MODBUS	Inlet Guide Vane Steps-Compressor 2
3-14	SPARE3 -14	SPARE	Sensor input not used
3-15	SPARE 3-15	SPARE	Sensor input not used
3-16	SPARE 3-16	SPARE	Sensor input not used

Sensor Inputs (MCS-SI-EXT)

#	Output Name	Туре	Description
4-1	Cmp3 Fault	TurboCorFault	Compressor 3 Fault Message
4-2	Ctrl Mode2	ModbusHex	Compressor 3 Control Mode
4-3	IGV Open%	MODBUS	Inlet Guide Vane%-Compressor 3
4-4	SuctPsi 2	MODBUS	Suction Pressure - Compressor 3
4-5	DiscPsi 2	MODBUS	Discharge Pressure - Compressor 3
4-6	CavityTmp2	MODBUS	Cavity Temperature-Compressor 3
4-7	InvertTmp2	MODBUS	Inverter Temperature-Compressor 3
4-8	ChokSpeed2	MODBUS	Choke Speed-Compressor 3
4-9	SurgSpeed2	MODBUS	Surge Speed-Compressor 3
4-10	ActSpeed2	MODBUS	Actual Speed-Compressor 3
4-11	ComPSIRat2	MODBUS	Compressor 3 Pressure Ratio
4-12	Cmp2Amps	MODBUS	Compressor 3 Amperage
4-13	M IGV2STPS	MODBUS	Inlet Guide Vane Steps-Compressor 3
4-14	SPARE 4-14	SPARE	Sensor input not used
4-15	SPARE 4-15	SPARE	Sensor input not used
4-16	SPARE 4-16	SPARE	Sensor input not used

Sensor Inputs (MCS-SI-BASE#2)

5-1	EvapPsi	MCS-200	Evaporator Pressure
5-2	DiscPsi 1	MCS-500	Discharge Pressure 1
4-3	DiscPsi 2	MCS-500	Discharge Pressure 2
5-4	DiscPsi 3	MCS-500	Discharge Pressure 3
5-5	LiqPsi	MCS-500	Liquid Pressure
5-6	SuctTmp 1	MCST100	Suction Temperature - Compressor 1
5-7	SuctTmp 2	MCST100	Suction Temperature - Compressor 2
5-8	SuctTmp 3	MCST100	Suction Temperature - Compressor 3
5-9	DiscTmp 1	MCST100	Discharge Temperature - Compressor 1
5-10	DiscTmp 2	MCST100	Discharge Temperature - Compressor 2
5-11	DiscTmp 3	MCST100	Discharge Temperature - Compressor 3
5-12	LiqTmp	MCST100	Liquid Temperature
5-13	Disable 1	DIGITAL	Turns Off Compressor 1
5-14	Disable 2	DIGITAL	Turns Off Compressor 2
5-15	Disable 3	DIGITAL	Turns Off Compressor 3
5-16	Ambient	MCST100	Outdoor Air Temperature

Sensor Inputs (MCS-SI-EXT#2)

#	Output Name	Туре	Description
6-1	Net R/S	BMS RUN	Building Management interface Run/Stop
6-2	NetReset	BMS CW RSET	Building Management interface target reset
6-3	NetDmdLmt	BMS Dmd FLA%	Building Management interface for Demand %
6-4	SPARE 6-4	SPARE	Sensor input not used
6-5	SPARE 6-5	SPARE	Sensor input not used
6-6	SPARE 6-6	SPARE	Sensor input not used
6-7	SPARE 6-7	SPARE	Sensor input not used
6-8	SPARE 6-8	SPARE	Sensor input not used
6-9	SPARE 6-9	SPARE	Sensor input not used
6-10	SPARE 610	SPARE	Sensor input not used
6-11	SPARE 6-11	SPARE	Sensor input not used
6-12	SPARE 6-12	SPARE	Sensor input not used
6-13	SPARE 6-13	SPARE	Sensor input not used
6-14	SPARE 6-14	SPARE	Sensor input not used
6-15	SPARE 6-15	SPARE	Sensor input not used
6-16	SPARE 6-16	SPARE	Sensor input not used

Analog Outputs (MCS-IO-BASE)

#	Output Name	Description
1-1	Exv%	Electronic Expansion Valve Control Signal
1-2	StgValve1%	Compressor 1 Staging Valve
1-3	StgValve2%	Compressor 2 Staging Valve
1-4	StgValve3%	Compressor 3 Staging Valve

Analog Outputs (MCS-IO-EXT)

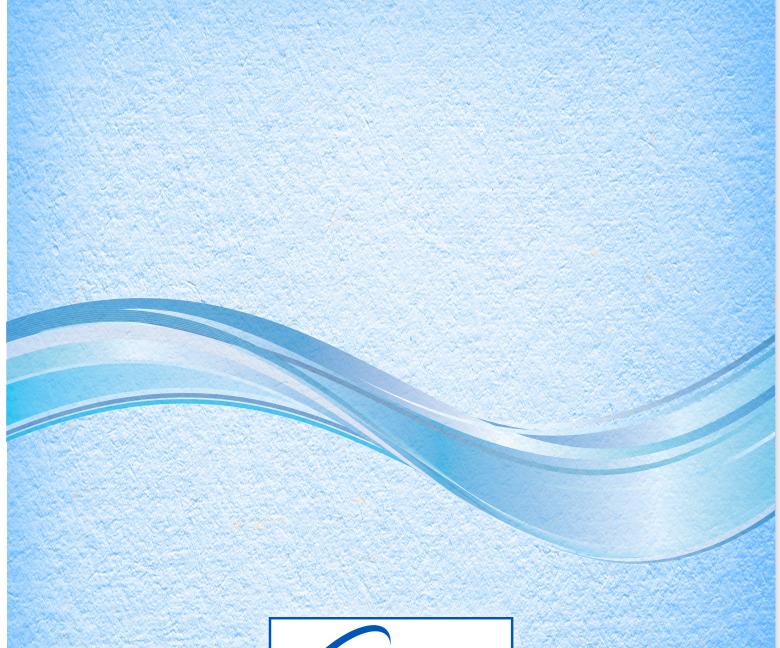
2-1	Demand 1%	Compressor 1 Speed Demand
2-2	SPARE1-2	Analog input not used
2-3	SPARE1-3	Analog input not used
2-4	SPARE1-4	Analog input not used

Analog Outputs (MCS-SI-BASE)

3-1	Demand 2%	Compressor 2 Speed Demand
3-2	SPARE2-2	Analog input not used
3-3	SPARE2-3	Analog input not used
3-4	SPARE2-4	Analog input not used

Analog Outputs (MCS-IO-EXT)

4-1	Demand 3%	Compressor 2 Speed Demand
4-2	SPARE2-2	Analog input not used
4-3	SPARE2-3	Analog input not used
4-4	SPARE2-4	Analog input not used


Sample Questionnaire

Visit https://www.mcscontrols.com/brochures.html for a fillable form to email to sales@mcscontrols.com

Company:	Phone:
Name:	Title:Email:
Mobile:Site:	
Unit Information	
Installation Site Name	
Model#	Unit Serial #Site Unit #
What is the Voltage of the Unit? 208V,	230V, 460V, 4160V, Other Voltage
What is the Control voltage in the unit?	24V, 115V, 230V, What type of Refrigerant is being used?
Is MCS monitoring Main Voltage? Yes Network Information	No. Will Phase loss need to be monitored? Yes No.
Integrating to Building Management System	(BMS) Yes No, If yes, complete the form provided on page 2.
Motor Information	
2. What is the Starter Type?	eve mor turing the transition OK up far it F. ult?
a. Does the Compressor	
3. Is there a Variable Frequency D	R CLICK ON THE VED Model
b . Will the VFD be hardwired to MCS	OR GODE BELOW.
c. Is MCS required to control VFD Cabin	net Auxiliary Fan? Yes No.
4. What are the Motor "RUN LOAD AMPS'(FLA	A)? COMP 1:
5. Is Hot Gas Bypass present? Yes	No, How does it operate?
	controlled?
7. Is MCS controlling the chiller Water Pump(s))? Lyes No, How will they be wired?
<u> </u>	mp(s)?
9. Is MCS controlling Condenser/Evaporator Is	solation Valve? Yes No BMS.
10. Is MCS controlling tower fan(s)? Yes	No, How many are there, how are they wired?
11. Will the Chilled/Condenser Water Flow be m	neasured by?
12. Will Ambient temperature need to be monito	red? Yes No.
CVHA Information Only	
	I MCS be monitoring the Oil Feed? Yes No, Return Temp
COMMENTS (Is there any other Infomation we no	Click for Brochure Upgrades ►
Viewing form printed Brochure, Scan QR code	e from mobile device, email the form to your email address.

- 2. Click on the emailed link. Fill out the digital fillable form on a computer and email to sales@mcscontrols.com
- 3. Viewing brochure from Computer, click on QR code, find the form your need, click on fillable form, fill out and email to $sales@\bar{m}cscontrols.com$

5580 Enterprise Pkwy., Fort Myers, FL 33905 Office: 239-694-0089 • Fax: 239-694-0031 www.mcscontrols.com